Crosswalk Shared Mode

This document aims to provide features description, build configuration, tools integration and the
details of new embedding APIs for shared mode.

Summary
Feature Description

Version Check Mechanism
Architecture Independent
Security Check
Built-in Updater
Tools Integration
Enable Shared mode
Configure the download URL
Embedding API
Permissions

XWalkActivity
XWalklnitializer

XWalkUpdater

1. Summary

Shared mode allows multiple Crosswalk applications to share one Crosswalk runtime. Each
Crosswalk application is bundled with a reflection layer instead of the full library files, whereas
there would be one and only one APK of Crosswalk runtime to be installed on the device for the
Crosswalk applications to use.

Embedded Mode Shared Mode

assetswnwwe: web
TESOUTCEs

assets fwww: weh
resources

Java classes:

lava classes;
org.xwalk.core

org.xwalk.core

Shared_app.apk

lava classes:
org.xwalk.core.internal

Java classes:
org.xwalk.core.internal

Libxwalkcore.so

Libxwalkcore.so

Embedded_app.apk ¥WalkLibrary.apk

\ o \, v

Figure: Embedded Mode vs. Shared Mode

The APK of Crosswalk runtime is published on Google Play Store and Crosswalk Project’s
official website. The end-users are able to get the APK via Google Play Store or the developer’'s
self-hosting service. The Crosswalk runtime will be upgraded periodically to introduce the latest
feature of Crosswalk and Chromium. The developer has the responsibility to follow up the
update cycle and keep their applications compatible with the latest version of Crosswalk
runtime.

Pros:
[]

Cons:

Produces a significant smaller APK size for Crosswalk applications. For example of
packaging a simple HelloWorld web application, the APK file size is 20MB for ARM and
23MB for x86. If the same contents is packaged in shared mode, the APK file size will
shrink to 68KB.

The Crosswalk application built in shared mode can run on both of the IA and ARM
devices, even the application built in embedded mode for ARM can run on the IA
devices, as long as there is a Crosswalk runtime installed on the device.

Great change for the release of Crosswalk application. New Crosswalk feature and
improvement can be delivered separately from applications. It also provides the
possibility to integrate Crosswalk runtime into customized ROM.

For devices that the Crosswalk runtime is not installed, the end-user have to download
the APK of Crosswalk runtime in the first run. The normal startup process of the
application will be interrupted.

e The new Crosswalk runtime may be incompatible with the old Crosswalk applications.
The developer need to do the beta testing beforehand before each release. Embedded
mode is recommended for the developers who want to stick to a specific version of
Crosswalk.

2. Feature Description

2.1. Version Check Mechanism

This is to guarantee the compatibility between the Crosswalk application and Crosswalk
runtime.

Along with the version name like 13.38.208.0 already in used, each release of Crosswalk will
also have an independent version which is an incremental version code to show the revision of
embedding API. This version is recorded in API_VERSION file as below:

API: 4
MIN_API: 2

The API version is for both of the Crosswalk application and Crosswalk runtime. The MIN_API
version is only for the Crosswalk runtime, it indicates the minimal version of Crosswalk
applications that the Crosswalk runtime would support.

The Crosswalk application will check the version of Crosswalk runtime installed on the device
before loading. If the version of application is between the current version and minimal
backward-compatible version of Crosswalk runtime, it means the version matched. Otherwise, a
dialog will pop up to to prompt the user to get the latest version of Crosswalk runtime.

2.2. Architecture Independent

The Crosswalk application in embedded mode will check whether the architecture of the
embedding Crosswalk runtime matches the device. If the architecture matched, the application
will use the embedding Crosswalk runtime directly. Otherwise, it will switch to shared mode.

The Crosswalk application in shared mode will check the architecture of the Crosswalk runtime
installed on the device at startup before loading. If the architecture doesn’t match, a dialog will
pop up to to prompt the user to get the suitable Crosswalk runtime.

2.3. Security Check

Before the application loading the Crosswalk runtime, it is necessary to make sure the APK of
Crosswalk runtime is not tampered and is exactly the one we published. The officially released
APK of Crosswalk runtime is signed with the signature from codesign.intel.com

The verification process are:
A. Get signatures of the package of Crosswalk runtime via package manager
B. Generate SHA1 fingerprint with each signature
C. Check against the fingerprint from codesign.intel.com

2.4. Built-in Updater

There is a built-in updater to help the user to get the APK of Crosswalk runtime. By default, the
updater will jump to the page of Crosswalk runtime on Google Play Store, subsequent process
will be up to the user. If the developer specified the download URL, the updater will launch the
download manager to fetch the APK.

The developer can also distribute and maintain the specific version of Crosswalk runtime in their
own way. The built-in updater won’t be activated as long as the version of the installed
Crosswalk runtime matches the Crosswalk application.

A Crosswalk Project Runtime
Not Found

This application requires the
Crosswalk Project runtime to work.

Please install it from the application
store, then restart this application.

CLOSE CONTINUE

Figure: Built-in Updater
3. Tools Integration

3.1. Enable Shared mode

e From Packaging Tool
To package the application in shared mode, use the option:
./make_apk.py --mode=shared ...

e From Cordova 3.x
To create a cordova project in shared mode, use the option:

./bin/create --xwalk-shared-library ...

e From Cordova 4.x
Coming soon.

e From Eclipse ADT
Download the Crosswalk package with the file name crosswalk-[version].zip from the link below.
Unzip the package and there is a project directory called xwalk_shared_library in it. Reference

this library project from Eclipse.

https://download.01.org/crosswalk/releases/crosswalk/android/

e From Android Studio

Download the AAR with the file name crosswalk-shared-[version].aar from the link below.
Import this AAR from your project.

https://download.01.org/crosswalk/releases/crosswalk/android/

3.2. Configure the download URL(NOT necessary)
e From Packaging Tool
Use the option below for make_apk.py:

./make_apk.py --xwalk-apk-url=http://host/XWalkRuntimelib.apk ...

o From The Crosswalk Manifest

Define an element with the key “xwalk_apk_url™:

{

"name": "XWalkApp",

"start _url”: "index.html",

"xwalk_apk url": "http://10.0.2.2/XWalkRuntimelib.apk",
}

e From The Android Manifest

Define a meta-data element with the name "xwalk_apk_url" inside the application tag:

https://download.01.org/crosswalk/releases/crosswalk/android/
https://download.01.org/crosswalk/releases/crosswalk/android/
http://host/XWalkRuntimeLib.apk
http://host/XWalkRuntimeLib.apk
http://host/XWalkRuntimeLib.apk
http://host/XWalkRuntimeLib.apk
http://host/XWalkRuntimeLib.apk
http://host/XWalkRuntimeLib.apk
http://host/XWalkRuntimeLib.apk
http://10.0.2.2/XWalkRuntimeLib.apk

<application>
<meta-data android:name="xwalk apk url"
android:value="http://host/XWalkRuntimeLib.apk" />

</application>

4. Embedding API

This section describes what extra effort is needed to take the benefit of shared mode. The full
instructions about embedding API is shown on
https://crosswalk-project.org/documentation/embedding crosswalk.html

4.1. Permissions

To download the Crosswalk runtime, you need to grant following permissions in the Android
manifest:

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS WIFI STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.WRITE_ EXTERNAL_ STORAGE"
/>

4.2. XWalkActivity

XWalkActivity helps to execute all procedures to make the Crosswalk runtime workable and
displays dialogs to interact with the user if needed. The activities that hold the XWalkView
objects might want to extend XWalkActivity to obtain this capability. For those activities,
there's no need to use XWalkInitializer and XWalkUpdater.

XWalkActivity will try to run in embedded mode firstly. If the Crosswalk runtime hasn't been
embedded in the app, or the embedded Crosswalk runtime doesn't match the CPU architecture
of the device, it will switch to shared mode, i.e., link to the separately installed Crosswalk
runtime package which is shared by multiple apps. If the Crosswalk runtime hasn't been
installed on the device, or the installed Crosswalk runtime isn't compatible with the app, it will
pop up dialogs to prompt the user to download suitable one. Once the user has agreed to
download, it will navigate to the page of Crosswalk runtime on the default application store,

https://crosswalk-project.org/documentation/embedding_crosswalk.html

subsequent process will be up to the user. If the developer specified the download URL of the
Crosswalk runtime, it will launch the download manager to fetch the package.

In old versions, the developer can use the embedding APl in onCreate() directly or any where
at any time as they wish. But in latest version, the Crosswalk runtime isn't loaded yet at the
moment the activity is created, so the embedding APl won't be usable immediately. To make
your code compatible with new implementation somtimes, all routines using the embedding API
should be inside onXWalkReady () or after onXWalkReady () is invoked. Please refer to
following example for more details

public class MyActivity extends XWalkActivity {
XWalkView mXWalkView;

@Override
protected void onCreate(Bundle savedInstanceState) {

true);

super.onCreate(savedInstanceState);

// Until onXWalkReady() is invoked, you should do nothing with the
// embedding API except the following:

// 1. Instanciate the XWalkView object

// 2. Call XWalkPreferences.setValue()

// 3. Call XWalkView.setUIClient()

// 4. Call XWalkView.setResourceClient()

XWalkPreferences.setValue(XWalkPreferences.ANIMATABLE XWALK VIEW,

setContentView(R.layout.activity xwalkview);

mXWalkView = (XWalkView) findViewById(R.id.xwalkview);
mXWalkView.setUIClient(new MyXWalkUIClient(mXWalkView));
mXWalkView.setResourceClient(new

MyXWalkResourceClient(mXWalkView));

}

@Override
public void onXWalkReady() {

// Do anyting with the embedding API
mXWalkView.load("http://crosswalk-project.org/", null);

4.3. XWalklinitializer

XWalkInitializer is an alternative to XWalkActivity with the difference that it provides a
way to initialize the Crosswalk runtime in background silently. Another advantage is that the
developer can use their own activity class directly rather than having it extend XWalkActivity.
However, XWalkActivity is still recommended because it makes the code simpler.

If the initialization failed, which means the Crosswalk runtime doesn't exist or doesn't match the
app, you could use XWalkUpdater to prompt the user to download suitable Crosswalk runtime.

For example:

public class MyActivity extends Activity implements
XWalkInitializer.XWalkInitListener {
XWalkView mXWalkView;
XWalkInitializer mXWalkInitializer;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Must call initAsync() before anything that involes the
embedding

// API, including invoking setContentView() with the layout which

// holds the XWalkView object.

mXWalkInitializer = new XWalkInitializer(this, this);
mXWalkInitializer.initAsync();

// Until onXWalkInitCompleted() is invoked, you should do nothing
// with the embedding API except the following:

// 1. Instanciate the XWalkView object

// 2. Call XWalkPreferences.setValue()

// 3. Call XWalkView.setUIClient()

// 4. Call XWalkView.setResourceClient()

XWalkPreferences.setValue(XWalkPreferences.ANIMATABLE XWALK VIEW,
true);

setContentView(R.layout.activity xwalkview);
mXWalkView = (XWalkView) findViewById(R.id.xwalkview);
mXWalkView.setUIClient(new MyXWalkUIClient(mXWalkView));

mXWalkView.setResourceClient(new
MyXWalkResourceClient(mXWalkView));

}

@Override

public void onXWalkInitCompleted() {
// Do anyting with the embedding API
mXWalkView.load("http://crosswalk-project.org/", null);

@Override
public void onXWalkInitStarted() {

}

@Override
public void onXWalkInitCancelled() {
// Perform error handling here

@Override
public void onXWalkInitFailed() {
// Perform error handling here, or launch the XWalkUpdater

4.4, XWalkUpdater

XWalkUpdater is a follow-up solution for XWalkInitializer in case the initialization has
failed. The users of XWalkActivity don't need to use this class.

XWalkUpdater helps to download the Crosswalk runtime and displays dialogs to interact with
the user. By default, it will navigate to the page of Crosswalk runtime on the default application
store, subsequent process will be up to the user. If the developer specified the download URL of
the Crosswalk runtime, it will launch the download manager to fetch the APK.

After the proper Crosswalk runtime is downloaded and installed, the user will return to current
activity from the application store or the installer. The developer should check this point and
invoke XWalkInitializer.initAsync() again to repeat the initialization process. Please
note that from now on, the application will be running in shared mode.

For example:

public class MyActivity extends Activity implements

if

XWalkInitializer.XWalkInitListener,
XWalkUpdater.XWalkUpdatelListener {
XWalkUpdater mXWalkUpdater;

@Override
protected void onResume() {
super.onResume();

// Try to initialize again when the user completed updating and
// returned to current activity. The initAsync() will do nothing

// the initialization has already been completed successfully.
mXWalkInitializer.initAsync();

@Override
public void onXWalkInitFailed() {
if (mXWalkUpdater == null) {
mXWalkUpdater = new mXWalkUpdater(this, this);

// The updater won't be launched if previous update dialog is
// showing.
mXWalkUpdater.updateXWalkRuntime();

@Override
public void onXWalkUpdateCancelled() {
// Perform error handling here

